Material for “ Spectral Compressed Sensing via Projected Gradient Descent ”

نویسندگان

  • Jian-Feng Cai
  • Tianming Wang
  • Ke Wei
چکیده

We extend PGD and its recovery guarantee [1] from one-dimensional spectrally sparse signal recovery to the multi-dimensional case. Assume the underlying multi-dimensional spectrally sparse signal is of model order r and total dimension N . We show that O(r log(N)) measurements are sufficient for PGD to achieve successful recovery with high probability provided the underlying signal satisfies some incoherence property. 1 Algorithm and Main Result Without loss of generality, we discuss the two-dimensional setting but emphasize that the situation in general d-dimensions is similar. Let wk = e (2πıf1k−τ1k) and zk = e (2πıf2k−τ2k) for r frequency pairs (f1k, f2k) ∈ [0, 1)2 and r damping factor pairs (τ1k, τ2k) ∈ R+. A two-dimensional spectrally sparse array X ∈ CN1×N2 can be expressed as X = r ∑ k=1 dkw a kz b k, (a, b) ∈ [N1]× [N2]. The two-fold Hankel matrix of X is given by HX =  HX(:,0) HX(:,1) HX(:,2) · · · · · · HX(:,N2−n2) HX(:,1) HX(:,2) · · · · · · · · · HX(:,N2−n2+1) HX(:,2) · · · · · · · · · · · · HX(:,N2−n2+2) .. .. .. .. .. .. HX(:,n2−1) HX(:,n2) · · · · · · · · · HX(:,N2−1)  , Email addresses: [email protected] (J.-F. Cai), [email protected] (T. Wang), and [email protected] (K. Wei, corresponding author).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Compressed Sensing via Projected Gradient Descent

Let x ∈ C be a spectrally sparse signal consisting of r complex sinusoids with or without damping. We consider the spectral compressed sensing problem, which is about reconstructing x from its partial revealed entries. By utilizing the low rank structure of the Hankel matrix corresponding to x, we develop a computationally efficient algorithm for this problem. The algorithm starts from an initi...

متن کامل

Projected Wirtinger Gradient Descent for Low-Rank Hankel Matrix Completion in Spectral Compressed Sensing

This paper considers reconstructing a spectrally sparse signal from a small number of randomly observed time-domain samples. The signal of interest is a linear combination of complex sinusoids at R distinct frequencies. The frequencies can assume any continuous values in the normalized frequency domain [0, 1). After converting the spectrally sparse signal recovery into a low rank structured mat...

متن کامل

A Unifying Analysis of Projected Gradient Descent for $ell_p$-constrained Least Squares

In this paper we study the performance of the Projected Gradient Descent (PGD) algorithm for lpconstrained least squares problems that arise in the framework of Compressed Sensing. Relying on the Restricted Isometry Property, we provide convergence guarantees for this algorithm for the entire range of 0 ≤ p ≤ 1, that include and generalize the existing results for the Iterative Hard Thresholdin...

متن کامل

Fast Reconstruction Algorithm for Perturbed Compressive Sensing Based on Total Least-Squares and Proximal Splitting

We consider the problem of finding a sparse solution for an underdetermined linear system of equations when the known parameters on both sides of the system are subject to perturbation. This problem is particularly relevant to reconstruction in fully-perturbed compressive-sensing setups where both the projected measurements of an unknown sparse vector and the knowledge of the associated project...

متن کامل

Fast Binary Compressive Sensing via \ell_0 Gradient Descent

We present a fast Compressive Sensing algorithm for the reconstruction of binary signals {0, 1}-valued binary signals from its linear measurements. The proposed algorithm minimizes a non-convex penalty function that is given by a weighted sum of smoothed l0 norms, under the [0, 1] box-constraint. It is experimentally shown that the proposed algorithm is not only significantly faster than linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017